Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 12: 712572, 2021.
Article in English | MEDLINE | ID: covidwho-1472386

ABSTRACT

The complement system is central to first-line defense against invading pathogens. However, excessive complement activation and/or the loss of complement regulation contributes to the development of autoimmune diseases, systemic inflammation, and thrombosis. One of the three pathways of the complement system, the alternative complement pathway, plays a vital role in amplifying complement activation and pathway signaling. Complement factor D, a serine protease of this pathway that is required for the formation of C3 convertase, is the rate-limiting enzyme. In this review, we discuss the function of factor D within the alternative pathway and its implication in both healthy physiology and disease. Because the alternative pathway has a role in many diseases that are characterized by excessive or poorly mediated complement activation, this pathway is an enticing target for effective therapeutic intervention. Nonetheless, although the underlying disease mechanisms of many of these complement-driven diseases are quite well understood, some of the diseases have limited treatment options or no approved treatments at all. Therefore, in this review we explore factor D as a strategic target for advancing therapeutic control of pathological complement activation.


Subject(s)
Complement Factor D/antagonists & inhibitors , Complement Pathway, Alternative/drug effects , Molecular Targeted Therapy , Adipose Tissue/metabolism , Aging/immunology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Complement Factor D/biosynthesis , Complement Factor D/deficiency , Complement Factor D/physiology , Energy Metabolism , Geographic Atrophy/genetics , Geographic Atrophy/immunology , Hemoglobinuria, Paroxysmal/drug therapy , Hemoglobinuria, Paroxysmal/genetics , Hemoglobinuria, Paroxysmal/immunology , Hepatocytes , Humans , Kidney Diseases/immunology , Liver/injuries , Oligonucleotides, Antisense/therapeutic use , Peptides, Cyclic/therapeutic use , Phagocytosis
3.
Blood ; 136(18): 2080-2089, 2020 10 29.
Article in English | MEDLINE | ID: covidwho-740364

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious respiratory virus that can lead to venous/arterial thrombosis, stroke, renal failure, myocardial infarction, thrombocytopenia, and other end-organ damage. Animal models demonstrating end-organ protection in C3-deficient mice and evidence of complement activation in humans have led to the hypothesis that SARS-CoV-2 triggers complement-mediated endothelial damage, but the mechanism is unclear. Here, we demonstrate that the SARS-CoV-2 spike protein (subunit 1 and 2), but not the N protein, directly activates the alternative pathway of complement (APC). Complement-dependent killing using the modified Ham test is blocked by either C5 or factor D inhibition. C3 fragments and C5b-9 are deposited on TF1PIGAnull target cells, and complement factor Bb is increased in the supernatant from spike protein-treated cells. C5 inhibition prevents the accumulation of C5b-9 on cells, but not C3c; however, factor D inhibition prevents both C3c and C5b-9 accumulation. Addition of factor H mitigates the complement attack. In conclusion, SARS-CoV-2 spike proteins convert nonactivator surfaces to activator surfaces by preventing the inactivation of the cell-surface APC convertase. APC activation may explain many of the clinical manifestations (microangiopathy, thrombocytopenia, renal injury, and thrombophilia) of COVID-19 that are also observed in other complement-driven diseases such as atypical hemolytic uremic syndrome and catastrophic antiphospholipid antibody syndrome. C5 inhibition prevents accumulation of C5b-9 in vitro but does not prevent upstream complement activation in response to SARS-CoV-2 spike proteins.


Subject(s)
Betacoronavirus , Complement Factor D/antagonists & inhibitors , Complement Inactivating Agents/pharmacology , Complement Pathway, Alternative/drug effects , Spike Glycoprotein, Coronavirus/pharmacology , Cell Line , Complement Activation/drug effects , Complement C3/metabolism , Complement C5/antagonists & inhibitors , Complement Factor H/metabolism , Complement Membrane Attack Complex/metabolism , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL